Welcome to Hoshino Lab

We study microscale force sensing and optical imaging for biomedical analysis. Our research interests include microscale mechanical characterization, microfluidic analysis of cells, and biomedical microscopy/spectroscopy. Emphasis is on the study of micro/mesoscale tissues and cancer cells.

Mechanical analysis of microtissues

Our approach relies on strong combinations of MEMS (microelectromechanical systems), robotics, optics, digital image analysis, and biological science.

We create unique robotic systems and analytical tools specifically designed for the study of micro/meso-scale (100 µm – 1 mm) tissues. Please also visit Microtissue Characterization for details. The images below show the stiffness analysis of a breast tumor spheroid and the von Mises strain mapping of a brain tumor spheroid. High-resolution video clip of the strain is also available. Video clip (1.3MB).


The very important application of our method is the study of embryonic tissues. We found that the body of zebrafish embyo changes its stiffness rapidly as it grows (link).

Please read our recent publications:

  • Tomizawa et al. Sensors 19(7), 1506, 2019. link
  • Jaiswal et al. Biomedical Optics Express 2019. link
  • Jaiswal et al. ACS Biomaterials Science & Engineering 2018. link
  • Jaiswal et al. PLoS ONE 12, e0188346, 2017. link

Detection and characterization of cancer cells

microfluidic chip

We have developed a microfluidic system that successfully separated cancer cells from clinical blood samples of patients with breast, prostate, colon, and lung cancer.

  • Jaiswal et al. Journal of Magnetism and Magnetic Materials, 427, 7-13, 2017. link
  • Chen et al. Scientific Reports, 5, 8745, 2015. link
  • Chen et al. Lab on a Chip, 14, 446-458, 2014. link
  • Huang et al. Biomedical Microdevices, 15, 673-681, 2013. link
  • Hoshino et al. Analytical Chemistry, 84, 4292-4299, 2012. link
  • Hoshino et al. Lab on a Chip 11, 3449-3457, 2011. link

Biomedical microscopy/spectroscopy

nano led probes

The techniques of optical microscopy and spectroscopy provide unique strength to our studies. Photograph shows an example of integrated quantum dot (QD)-based nanoscale LEDs integrated at the tip of near field scanning optical microscopy probe.

  • Hoshino et al., Biomedical Optics Express, 5, 1610-1615, 2014. link
  • Hoshino et al., Sensors and Actuators A, 216, 301-307, 2014. link
  • Hoshino et al., Applied Physics Letters, 101, 043118, 2012. link
  • Gopal et al., Applied Physics Letters, 96, 131109, 2010. link
  • Gopal et al., Nanotechnology 20, 235201, 2009. link


List of People